This study utilizes 2D van der Waals (vdW) ferroelectric CuCrP2S6 (CCPS) as the gate dielectric to develop hysteresis-free negative capacitance field-effect transistors (NC-FETs) for low-power electronics.
Key findings include:
Scanning Microwave Impedance Microscopy (sMIM) characterizes CCPS’s dielectric properties, revealing a thickness-independent dielectric constant (~35) across 6–70 nm, validated by finite element analysis (FEA) and capacitance-voltage (C-V) measurements.
Optimized NC-FETs with MoS2 channels (via precise capacitance matching between CCPS and MoS2) exhibit ultra-steep subthreshold swing (~12 mV/dec), negligible hysteresis (insensitive to voltage scan range/rate), and high on-off ratio (~10⁶).
A resistor-loaded inverter based on the NC-FET operates at a low supply voltage (0.2 V) with ultralow power consumption (1.67 pW) and maintains a voltage gain >1, meeting low-power logic circuit requirements.
This work highlights CCPS' s potential for advancing high-performance, low-power post-Moore NC-FET technologies.
在本篇文章中,扫描微波阻抗显微镜SMIM具体的应用场景和作用如下:
- 表征CCPS的介电特性:通过 sMIM 技术结合有限元模拟(FEA),定量测定范德华铁电材料CuCrP₂S₆(CCPS)的相对介电常数,发现其在 6-70 nm 厚度范围内呈厚度无关性,数值稳定在≈35,且该结果与电容 - 电压(C-V)测量一致,为后续器件电容匹配设计提供关键参数。
- 获取CCPS厚度 - 信号关系:通过sMIM成像提取CCPS纳米片与Au衬底的信号对比度,观察到信号与厚度呈准反比关系,进一步辅助介电常数的定量分析,明确CCPS作为栅极介电材料的厚度适配范围。
- 支撑NC-FET器件设计:基于sMIM测得的CCPS介电常数(≈35),结合 MoS₂的介电常数(≈7),推导得出CCPS与MoS₂的厚度匹配条件(T_CCPS ≤ (T_MoS₂・ε_CCPS)/ε_MoS₂),为优化NC-FET器件结构、实现无滞后特性和超陡亚阈值摆幅(≈12 mV/dec)提供数据支撑。